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Many Reed-Solomon decoders, including the one decoding the outer code for Voyager
data from Uranus, assume that all symbols have the same chance of being correct or
incorrect. In some cases, like in a burst of incorrect symbols, this is not the case, and a
Reed-Solomon decoder could make use of this. We examine the use of information about
bit quality sent to the Reed-Solomon from an (inner) Viterbi decoder and information
about the error status of adjacent symbols in decoding interleaved Reed-Solomon en-
coded symbols, and discover that, in a region of interest, only about 0.04 dB can be

gained.

l. Introduction

A digital coding system, used on Voyager and as an interna-
tional coding standard, is shown in Fig. 1. The decoding for
this system, as implemented in the deep space network and at
JPL, is shown in Fig. 2. The Reed-Solomon code is able to
make use of soft-quantized data, however, especially in the
form of symbol erasures. This article considers the value of
passing “erasure information” to the Reed-Solomon decoder.

Our Reed-Solomon code is an 8-bit (255, 223) code. This
means that each word consists of 255 symbols of 8 bits each.
Of these symbols, 223 are information and 32 are parity. The
code allows any 16 symbol errors to be corrected. But the
code in fact has greater erasure correction capability. If some
symbols are lost, or if there is reason to believe that some
symbols are in error, they can be declared “erasures.” The
code can correct any word in which 2e + E < 32, where e is
the number of errors in the word and E is the number of
erasures.

From time to time, methods have been discussed to make
use of this erasure correction capacity. One is to develop a

method of determining quality information for Viterbi de-
coded bits from the rate of decoder metric renormalization,
and to erase those symbols which contain bits of bad quality.
Another is to make use of the interleaving of Reed-Solomon
words (Fig. 3) to erase symbols which are adjacent to incor-
rect symbols. (This uses the fact that errors in a Viterbi
decoded stream fall in “bursts”; Ref. 1.) We have used a
software Viterbi decoder simulator written by Fabrizio Pollara
to simulate a number of possible methods for the Viterbi
decoder to pass quality information bits; these are described
below, but none of them is satisfactory. We have studied the
method of using information from interleaved words; this
gains only about 0.04 dB, but at some signal-to-noise ratios
this improves the bit error rate by about 50%. (This method
may be used by the European Space Agency during its Giotto
mission.)

li. Erasure Information from the
Viterbi Decoder

A problem with determining quality information for
Viterbi decoded bits from the rate of metric renormalization is
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that we don’t know how the metric renormalization is imple-
mented in the Viterbi decoder, but we can simulate it by
examining the change in the best (smallest) metric over time.
We assumed that we could find the exact best metric after any
bit and compare the observed byte errors to the difference in
the best metric over 8 consecutive bits. This method should
give us results at least as good as in any kind of renormaliza-
tion scheme.

It is unclear whether the highest correlation will occur by
comparing the difference in metrics from the beginning of a
byte to the end of it, or from the nth bit in the byte to the nth
in the next, or even by comparing one byte’s metrics to
another byte, so we used programs that would allow the user
to try all of these schemes (Fig. 4). The difference in best
metric (BM) was computed from the nth bit in one byte to the
nth bit in the next and compared to the mth byte away. Then
m and n were varied to achieve the highest correlation. ‘

After shifting bits and metrics to find the highest correla-
tion on several simulations, we found very little correlation at
all. We used a program that assumes that all bytes with a cor-
responding metric above a certain threshold (set by the user)
will be erased, and calculates the improvement gained in bytes.
For example, an improvement of 2 bytes means that the Reed-
Solomon decoder will react (decode or not) as though there
were 2 fewer byte errors than before. Of course, this number
means nothing unless compared with the number of bytes
observed.

With 896 bytes observed at 0 dB, the best gain found was
15.5 bytes over the 373 bytes in error using conventional
means, a gain in byte error rate from 0.364 to 0.349. Reed-
Solomon frames essentially never decode at either of these
error rates (less than 0.001% of the time), so there is no gain.
There can be gain from erasures only if the Reed-Solomon
word decodes after erasures.

With 3968 bytes observed at 1.5 dB (an interesting area for
Reed-Solomon encoded data), the best gain found was 1 byte
(2 predicted errors and 2 occurrences) over the conventional
201 bytes in error, a gain in byte error rate from 0.0507 to
" 0.0504. Considering the fact that there would almost never be
more than one erasure in a frame (less than 1% of the time),
this is no real gain at all, There can be gain from erasures only
if there are at least two of them.

Ill. Erasure Information From Interleaved
Reed-Solomon Words

Examining erasure based on interleaving of Reed-Solomon
codewords proved more profitable. We ran the simulation for a
long time and made a graph of the symbol error bursts (Fig.
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5). Then, given an undecoded word W,, we found the probabil-
ity that the previous word W, | decoded and erased all sym-
bols in W, following those symbols which were corrected in
W, .. Possibly an even better scheme is erasing only symbols

i-1

in W, surrounded by two detected in error (in W,_, and W, ),

which works only if the words on both sides of W, decode.

Taking into account the fact that not all undecoded words
have an adjacent decoded word (only 77% do at 1.7 dB), and
even given that an adjacent word decodes the probability of
decoding is not 100% (37% will then decode), only 29% of the
previously undecoded words will decode with this scheme
(Fig. 6).

The gain may now be calculated by making a graph of the
probability of an undecoded word for the regular decoder and
for the new one (Fig. 7). The calculated estimate of the prob-
ability of decoding previously undecoded words for 2 dB was
about the same as for 1.7 dB, so the gain for this one-sided
scheme is about 0.02 dB.

At 1.7 dB, the statistics in Fig. 5 show that if the symbol
before a given symbol is in error but the one after it is not, the
symbol in between is more likely to be correct than incorrect.
Therefore, if an undecoded word is surrounded by two de-
coded ones, erasing all symbols which are adjacent to exactly
one detected in error loses more than it gains. However, if only
symbols surrounded on both sides by symbols are erased, 10
times as many symbols in error as correct ones will be erased.

We calculated that 61% of the undecoded words are sur-
rounded by two decoded words. Even those 61% will not de-
code with probability 1, but a good guess (derived from the
assumptions in the appendix) is that about 81% will now
decode. Therefore, about 50% of the previously undecoded
words will now decode at 1.7 dB (Fig. 6).

The gain may be calculated by making a graph of the prob-
ability of an undecoded word for the regular decoder and for
the new one (Fig. 7). We assume that the estimated probabil-
ity of decoding previously undecoded words for 2 dB is about
the same as for 1.7 dB, so the curve may be drawn. The gain
for this two-sided scheme is about 0.03 dB.

From the above information, we may naively estimate the
probability of decoding previously undecoded words if we
try the two-sided scheme when both W, , and W, , decode
and the one-sided scheme if only one of them decodes.

The probability that exactly one side decodes is 2 X (77%
- 61%) = 32% and 29% of those will now decode, so we get
50% + (32% X 29%) = 59% of the previously undecoded words
to now decode (Fig. 6).




The gain may be calculated by making a graph of the
probability of an undecoded word for the regular decoder and
for the new one (Fig. 7). We assume that the estiméted prob-
ability of decoding previously undecoded words for 2 dB is
about the same as for 1.7 dB, so the curve may be drawn. The
gain for this combination of the two schemes is about 0.04 dB.

Figures 6 and 7 show the probability of not decoding a
word instead of the probability of not decoding a single

symbol. To find that, one must multiply by the fraction of
symbols in error given that a word doesn’t decode (the mean
number of symbols in error given that a word doesn’t decode
divided by 255). These new schemes decode most of the
undecoded words with a low number of errors, so the fraction
of errors given that a word doesn’t decode will increase and
the symbol error rate gain may not be quite as good. (The
change in mean number of symbols in error given that a word
doesn’t decode should be about from 20 to 21.)
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OBSERVED NUMBER

WORD 1 WORD 2 WORD 3 WORD 4 WORD 5
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Fig. 3. The 5 interleaved (vertical) Reed-Solomon codewords of
255 symbols each. Notice the sequence of the symbols.

BYTE (1) BYTE (2)
5|5|5|5|5|5|5|5|5|5|5|5|5|5 5|5
w | . <
& B5)E|5|8|8|2|Bi3|5|5]5]8]8
SRR EREEEEREEREEE
SIS A S E SIS B FS ESA RS I I EA RS B
HEHHBHEBEHHBEHEHEHEE
DIFFERENCE IN BM (2, n) = BM {1, n) BM (3, n) ~-BM (2, n) |
BEST METRICS (BM) 1
,  COMPARISONS ’
ERROR STATUS | S(m-1) H 5 (m) ]

Fig. 4. Difference in best metric (BM) vs byte error status (S)
comparisons. Variable n is the bit in the byte where you want to start
computing and m is the byte shift.
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Fig. 5. A graph of the length of bursts for 1, 1.7, and 2 dB as observed in simulation and
normalized to 1500 errors at each E,/N,
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Fig. 6. A graph comparing undecoded word rates for the old scheme and the three new ones
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Fig. 7. A graph of the probability of an undecoded word for the
old scheme and the three new ones
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Appendix

The above analyses may all be derived from the following

assumptions (Viterbi decoder errors occur in “bursts”; Ref. 1)
and observations using the software Viterbi decoder at 1.7 dB.

Total number of symbols = 38528
Total number of errors = 1497
Total number of bursts = 659

Number of correct symbols with two adjacent incorrect
symbols = 33

Total number of triple errors = 430

If m = word 7 and Ej = the number of errors in Wi then we

assume:
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P(Wl. now decodes IWI._I, le decoded and E, = 17)=100%
P(W, now decodes | W,_,, W,,, decoded and E; = 18) = 90%
P(W, now decodes | W,_,, W, decoded and £; = 19) = 55%
P(W,; now decodes | W,_,, W,,, decoded and E; = 20) = 10%

P(W; now decodes | W, ,, W, , decoded and E; = 21 to
255)=0%

In the one-sided scheme, we assumed that only symbols
that were adjacent to a symbol that decoded with the normal
decoder may now be affected by the new new scheme. This
makes the estimate a little low since we could decode one
word with the new scheme and then use that information to
decode the word next to it, but this would seem to happen so
infrequently that we didn’t try to estimate its probability.




